谷歌这一年,在AI方面都有哪些成果与进展?
年末将至,近日谷歌在东京举办了一场分享会,围绕Made with AI对过去一年的成果做了总结。 Google Brain 负责人Jeff Dean
谷歌资深研究员,Google Brain 负责人Jeff Dean开场提纲挈领地讲到:我们在人工智能领域的愿景,是通过三种途径让每个人都从中受益:
使谷歌的产品更加实用;
帮助企业和开发者创新;
为研究人员提供工具,从而解决人类面对的各项重大挑战。
AI赋能软件:
Jeff提到,机器学习是谷歌在人工智能领域的工作重心。作为计算机科学的一种形式,他认为机器学习编写能使计算机自主学习如何变得智能的程序,要比直接编写智能程序要更为简单。
说到谷歌开展机器学习的研究,Jeff再次使用了谷歌在 2012 年关于机器识猫的论文,和 2015 年谷歌开源TensorFlow这两个重要事例。现在,TensorFlow是GitHub上最受欢迎的工具。
Jeff认为,机器学习仍处于发展初期。如今,机器学习对分类,预测,理解和生成这四个关键方面很有帮助。这些功能几乎被应用于谷歌所有的产品中,使产品更加实用,例如:谷歌相册,谷歌翻译,谷歌地图和Google Lens等等。下面分别做一简要总结介绍。 谷歌相册(Google Photos),被重点提出的功能是照片搜索(Photo Search)。谷歌相册可以通过图像识别妥善分类所有照片,使查找更方便。
而谷歌翻译(Google Translate),可以和谷歌相册结合起来使用。用相机照下的图片,它可以帮你翻译出来。
Jeff介绍,事实上翻译这项工作已经持续了十年。在过去,翻译系统并非基于神经网络的系统,而是使用更简单的统计翻译模型,由 50 万行代码组成。 2016 年推出的新神经网络机器翻译系统经过了简单却有效的数据训练。新系统仅由 500 行TensorFlow代码组成,而非 50 万行。
“我们去年秋天开始使用新的神经网络翻译系统后,翻译准确性得到了很大的改进,可比肩过去十年中取得的提升。”
现在,谷歌将神经网络机器翻译应用到了 97 组语言对中。效果提升最明显的是日英互译。
谷歌地图(Google Map),即便在没有数据许可的情况下,通过卫星的介入,加上机器学习和计算机视觉等技术也可以产生可用的地图。
Google Lens,可以把你看到的东西搜索出来,得到相关的信息。
而文本理解能力的提升,让Gmail更好用。比如智能系统通过读取内容和预测回应,可以给用户提供回复答案或建议。Gmail数据显示,目前有12%的回复来自手机,这将使人们的日常工作更加便捷。 这里值得一提的是谷歌助理(Google Assistant),它的核心技术是语音识别,包含了很多机器学习的相关技术。“没有人工智能和机器学习这个产品是不可能存在的。”Jeff强调道。
使用 Google Assistant,用户可以与谷歌进行自由对话,从而完成不同种类的任务,比如寻找某一问题的答案、导航服务、获取新闻或得到日程安排方面的帮助。
Google Assistant 可以在不同设备间通用。目前,Google Assistant 可使用的国家和地区包括:
澳大利亚,巴西,加拿大(英文和法文),德国,法国,意大利,印度(英文,印度文),印度尼西亚,日本,韩国,墨西哥,新加坡,西班牙,英国和美国(英文,西班牙文)。(是的,并没有中国。)
在YouTube上,谷歌通过机器学习给超过 10 亿的视频自动加上字幕,使得有听觉障碍的人可以看到视频中的对白。 软硬结合:AI赋能硬件
Jeff介绍了谷歌将新型的硬件与软件相结合的一个实例:Pixel Buds。它是能将使用者周围人说的话实时翻译成使用者母语的耳机,运用了语音识别和翻译技术。
Google产品经理Isaac Reynolds介绍了新款Pixel手机中的人像模式( Portrait Mode)。
机器学习和计算摄像的结合为新Pixel手机的人像模式赋能。通过这个功能,使用者可以拍摄背景平滑模糊的人像图片。拍摄这种照片,大摄像机一般需要多个镜头,而Pixel仅需正反各一个镜头。
这就是谷歌在硬件方面正在采用的新处理方式:让硬件、软件、以及 AI 相互结合。
接着,Isaac介绍了Google Home中的语音配对功能(Voice Match):机器学习的加入有助于识别不同的语音,使最多六个用户连接到同一台 Google Home。
在机器学习和语言方面,搜索项目总监Linne Ha介绍了语音搜索和文本转语音项目。
语音搜索 (Voice Search),指在机器学习的帮助下,自然语言处理系统能够更好地理解人们想说的话。Linne介绍道,谷歌的语音搜索现在支持 119 种语言,其中包括 11 种印度语言和 3 种印度尼西亚语言。
Project Unison,是一个利用机器学习实现文本转语音 (Text-to-Speech)的实验项目。通过转换引擎,手机可以用语料并不丰富的语种,如孟加拉语,高棉语和爪哇语与您对话。而机器学习模型有助于减少构建文本到语音模型所需的数据量。
新浪科技总结下来,谷歌的策略就是“软硬结合、硬件打通”,让语言、语音和图像技术在各个应用设备上和场景中的使用得到无缝接合。
AI赋能开发者:
谷歌为企业及开发者提供三种创新工具:TensorFlow,云机器学习 API (Cloud Machine Learning APIs) 以及张量处理器 (Tensor Processing Unit, TPU) 电脑芯片。
其中TensorFlow现在有 1 万的全球开发者在使用。使用TensorFlow的企业中包括中国企业,比如小米。
最后一部分是Google产品经理Lily Peng介绍如何用AI让世界更美好。人工智能还能应用于医疗、环保、节能、动物保护等等各方面。
让AI惠及每一个人:
分享会的最后,Jeff 再次上台,介绍了当下时间内谷歌在AI方面的一些思路。
Jeff提到,作为一家 AI First 的公司,谷歌希望让每个人都能够从人工智能中获益。 目前已经取得了一些进展,但是仍然有一些困难需要克服,例如:
首先,需要想方设法让机器学习模型的创作过程更加触手可及:
对此谷歌的解决方案是提供培训:谷歌明年将在互联网上提供免费的机器学习课程。现在已经有 1. 8 万名谷歌员工参加过此项培训。
第二点,谷歌正在研究如何使用 AutoML 自动创建机器学习模型。
为了确保谷歌构建的机器学习模型具有包容性,并且能够真正为每个人所用:
谷歌启动了People + AI Research (PAIR) 计划,旨在将谷歌的研究人员聚集在一起,研究并重新设计人与人工智能系统交互的方式。Facets 正是此计划所孕育出的一种工具,能够 将用于机器学习的训练数据可视化。
谷歌还与Geena Davis 研究所合作建立了GD-IQ,一种利用机器学习检测电影中性别偏见的工具。
总之,Google在AI方面的长远目标,就是要让机器学习、AI触手可及。